

Register Number: DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. MATHEMATICS– I SEMESTER SEMESTER EXAMINATION: OCTOBER 2019 <u>MT 118 : MATHEMATICS PAPER I</u>

Time- 2 1/2 hrs

Max Marks-70

(5 X 2 = 10)

This question paper contains FOUR parts and TWO printed pages.

- I. Answer any FIVE of the following.
 - 1. Find the rank of the matrix $A = \begin{pmatrix} 1 & -7 & 15 & -14 \\ 2 & 3 & -4 & 6 \\ 3 & -4 & 11 & -8 \\ 5 & -1 & 7 & -2 \end{pmatrix}$.
 - 2. For what values of λ and μ the following system has an infinite number of

solution x + y + z = 6; x + 2y + 3z = 10; $x + 2y + \lambda z = \mu$. Justify.

- 3. Find the n^{th} derivative of $\cos(ax + b)$.
- 4. If $x = r\cos\theta$, $y = r\sin\theta$ then find $\frac{\partial(r,\theta)}{\partial(x,y)}$.
- 5. Evaluate $\int_0^{\frac{\pi}{4}} tan^5 x \, dx$.

6. Show that the planes 2x - 4y + 3z + 5 = 0 and 10x + 11y + 8z - 17 = 0 are perpendicular.

- 7. Find the angle between the line $\frac{x-3}{2} = \frac{y-1}{1} = \frac{z+4}{-2}$ and the plane x + y + 4 = 0.
- 8. Find the equation of the sphere which passes through (-1,2,3) and has its centre at (3,-1,1).

II. Answer any THREE of the following.

9. Reduce the following matrix to its normal form and hence find its rank

$$A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7 \end{bmatrix}.$$

10. Find the inverse of the matrix $A = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{bmatrix}$ by elementary operations. 11. Test the consistency and solve: x + 2y - 5z = -13; 3x - y + 2z = 1; 2x - 2y + 3z = 2 and x - y + z = -1.

12. Diagonalise the matrix $A = \begin{bmatrix} 2 & 4 \\ 0 & 5 \end{bmatrix}$.

III. Answer any FIVE of the following.

13. If
$$y = (x + \sqrt{x^2 - 1})^m$$
 show that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$.

14. State and prove Euler's theorem and its extension for homogeneous functions. 15. If u = f(r) where $r = \sqrt{r^2 + r^2}$, show that $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial r^2} +$

15. If
$$u = f(r)$$
 where $r = \sqrt{x^2 + y^2}$, show that $\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2} = f(r) + \frac{1}{r}f(r)$.
16. (i) If $z = e^{ax+by}f(ax - by)$ show that $b\frac{\partial z}{\partial x} + a\frac{\partial z}{\partial y} = 2abz$
(ii) If $z = \tan^{-1}(\frac{y}{x})$ where $y = \tan^2 x$ find $\frac{dz}{dx}$ (4+2)
17. If $u = \frac{yz}{x}$, $u = \frac{xy}{x}$ show that $\frac{\partial(u,v,w)}{\partial x} = 4$

17. If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$

- 18. (i) Write the reduction formula for $\int_0^{\frac{\pi}{2}} sin^m x cos^n x dx$ (ii) Evaluate $\int_0^{\pi} x sin^4 x cos^6 x dx$ (2+4)
- 19. Evaluate $\int_0^{\infty} \frac{\tan^{-1} ax}{x(1+x^2)} dx$, where *a* is a parameter, by applying differentiation under integral sign.

IV. Answer any TWO of the following.

(2X6=12)

20. Find the equation of the plane containing the line $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+4}{-3}$ and passing through the point (1,3,2)

21. Find the shortest distance between the lines $\frac{x-3}{1} = \frac{y-4}{-2} = \frac{z+2}{-1}$ and 3x - y - 10 = 0 = 2x - z - 4

22. Find the equation of the sphere which touches the plane 3x + 2y - z + 2 = 0 at (1, -2, 1) and passing through the origin.

(5X6=30)